7.10 Cross-Validation 245

The quantity trace (S) is the effective number of parameters, as defined in Section 7.6.

GCV can have a computational advantage in some settings, where the trace of **S** can be computed more easily than the individual elements S_{ii} . In smoothing problems, GCV can also alleviate the tendency of cross-validation to undersmooth. The similarity between GCV and AIC can be seen from the approximation $1/(1-x)^2 \approx 1+2x$ (Exercise 7.7).

7.10.2 The Wrong and Right Way to Do Cross-validation

Consider a classification problem with a large number of predictors, as may arise, for example, in genomic or proteomic applications. A typical strategy for analysis might be as follows:

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Is this a correct application of cross-validation? Consider a scenario with N = 50 samples in two equal-sized classes, and p = 5000 quantitative predictors (standard Gaussian) that are independent of the class labels. The true (test) error rate of any classifier is 50%. We carried out the above recipe, choosing in step (1) the 100 predictors having highest correlation with the class labels, and then using a 1-nearest neighbor classifier, based on just these 100 predictors, in step (2). Over 50 simulations from this setting, the average CV error rate was 3%. This is far lower than the true error rate of 50%.

What has happened? The problem is that the predictors have an unfair advantage, as they were chosen in step (1) on the basis of *all of the samples*. Leaving samples out *after* the variables have been selected does not correctly mimic the application of the classifier to a completely independent test set, since these predictors "have already seen" the left out samples.

Figure 7.10 (top panel) illustrates the problem. We selected the 100 predictors having largest correlation with the class labels over all 50 samples. Then we chose a random set of 10 samples, as we would do in five-fold crossvalidation, and computed the correlations of the pre-selected 100 predictors with the class labels over just these 10 samples (top panel). We see that the correlations average about 0.28, rather than 0, as one might expect. Here is the correct way to carry out cross-validation in this example:

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold k = 1, 2, ..., K

246 7. Model Assessment and Selection

Correlations of Selected Predictors with Outcome

FIGURE 7.10. Cross-validation the wrong and right way: histograms shows the correlation of class labels, in 10 randomly chosen samples, with the 100 predictors chosen using the incorrect (upper red) and correct (lower green) versions of cross-validation.

- (a) Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
- (b) Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
- (c) Use the classifier to predict the class labels for the samples in fold k.

The error estimates from step 2(c) are then accumulated over all K folds, to produce the cross-validation estimate of prediction error. The lower panel of Figure 7.10 shows the correlations of class labels with the 100 predictors chosen in step 2(a) of the correct procedure, over the samples in a typical fold k. We see that they average about zero, as they should.

In general, with a multistep modeling procedure, cross-validation must be applied to the entire sequence of modeling steps. In particular, samples must be "left out" before any selection or filtering steps are applied. There is one qualification: initial *unsupervised* screening steps can be done before samples are left out. For example, we could select the 1000 predictors

7.10 Cross-Validation 247

with highest variance across all 50 samples, before starting cross-validation. Since this filtering does not involve the class labels, it does not give the predictors an unfair advantage.

While this point may seem obvious to the reader, we have seen this blunder committed many times in published papers in top rank journals. With the large numbers of predictors that are so common in genomic and other areas, the potential consequences of this error have also increased dramatically; see Ambroise and McLachlan (2002) for a detailed discussion of this issue.

7.10.3 Does Cross-Validation Really Work?

We once again examine the behavior of cross-validation in a high-dimensional classification problem. Consider a scenario with N = 20 samples in two equal-sized classes, and p = 500 quantitative predictors that are independent of the class labels. Once again, the true error rate of any classifier is 50%. Consider a simple univariate classifier: a single split that minimizes the misclassification error (a "stump"). Stumps are trees with a single split, and are used in boosting methods (Chapter 10). A simple argument suggests that cross-validation will not work properly in this setting²:

Fitting to the entire training set, we will find a predictor that splits the data very well. If we do 5-fold cross-validation, this same predictor should split any 4/5ths and 1/5th of the data well too, and hence its cross-validation error will be small (much less than 50%.) Thus CV does not give an accurate estimate of error.

To investigate whether this argument is correct, Figure 7.11 shows the result of a simulation from this setting. There are 500 predictors and 20 samples, in each of two equal-sized classes, with all predictors having a standard Gaussian distribution. The panel in the top left shows the number of training errors for each of the 500 stumps fit to the training data. We have marked in color the six predictors yielding the fewest errors. In the top right panel, the training errors are shown for stumps fit to a random 4/5ths partition of the data (16 samples), and tested on the remaining 1/5th (four samples). The colored points indicate the same predictors marked in the top left panel. We see that the stump for the blue predictor (whose stump was the best in the top left panel), makes two out of four test errors (50%), and is no better than random.

What has happened? The preceding argument has ignored the fact that in cross-validation, the model must be completely retrained for each fold

 $^{^2\}mathrm{This}$ argument was made to us by a scientist at a proteomics lab meeting, and led to material in this section.